Asymptotic properties of sample quantiles of discrete distributions
نویسندگان
چکیده
The asymptotic distribution of sample quantiles in the classical definition is well-known to be normal for absolutely continuous distributions. However, this is no longer true for discrete distributions or sampleswith ties.We show that the definition of sample quantiles based on mid-distribution functions resolves this issue and provides a unified framework for asymptotic properties of sample quantiles from absolutely continuous and from discrete distributions. We demonstrate that the same asymptotic normal distribution result as for the classical sample quantiles holds at differentiable points, whereas a more general form arises for distributions whose cumulative distribution function has only one-sided differentiability. For discrete distributions with finite support, the same type of asymptotics holds and the sample quantiles based on mid-distribution functions either follow a normal or a two-piece normal distribution. We also calculate the exact distribution of these sample quantiles for the binomial and Poisson distributions. We illustrate the asymptotic results with simulations.
منابع مشابه
Asymptotic distribution of two-sample empirical U-quantiles with applications to robust tests for structural change
Asymptotic distribution Asymptotic distribution Asymptotic distribution Asymptotic distribution of two of two of two of two-sample empirical sample empirical sample empirical sample empirical U U U U-quantiles with application quantiles with application quantiles with application quantiles with applications s s s to robust tests for structural to robust tests for structural to robust tests for ...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملBootstrapping Sample Quantiles of Discrete Data
Sample quantiles are consistent estimators for the true quantile and satisfy central limit theorems (CLTs) if the underlying distribution is continuous. If the distribution is discrete, the situation is much more delicate. In this case, sample quantiles are known to be not even consistent in general for the population quantiles. In a motivating example, we show that Efron’s bootstrap does not c...
متن کاملM-estimators as GMM for Stable Laws Discretizations
This paper is devoted to "Some Discrete Distributions Generated by Standard Stable Densities" (in short, Discrete Stable Densities). The large-sample properties of M-estimators as obtained by the "Generalized Method of Moments" (GMM) are discussed for such distributions. Some corollaries are proposed. Moreover, using the respective results we demonstrate the large-sample pro...
متن کاملClassification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions
Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...
متن کامل